(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
b(b(x1)) → c(d(x1))
c(c(x1)) → d(d(d(x1)))
c(x1) → g(x1)
d(d(x1)) → c(f(x1))
d(d(d(x1))) → g(c(x1))
f(x1) → a(g(x1))
g(x1) → d(a(b(x1)))
g(g(x1)) → b(c(x1))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(c(z0)) → c2(D(d(d(z0))), D(d(z0)), D(z0))
C(z0) → c3(G(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
D(d(d(z0))) → c5(G(c(z0)), C(z0))
F(z0) → c6(G(z0))
G(z0) → c7(D(a(b(z0))), B(z0))
G(g(z0)) → c8(B(c(z0)), C(z0))
S tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(c(z0)) → c2(D(d(d(z0))), D(d(z0)), D(z0))
C(z0) → c3(G(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
D(d(d(z0))) → c5(G(c(z0)), C(z0))
F(z0) → c6(G(z0))
G(z0) → c7(D(a(b(z0))), B(z0))
G(g(z0)) → c8(B(c(z0)), C(z0))
K tuples:none
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
B, C, D, F, G
Compound Symbols:
c1, c2, c3, c4, c5, c6, c7, c8
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
C(c(z0)) → c2(D(d(d(z0))), D(d(z0)), D(z0))
D(d(d(z0))) → c5(G(c(z0)), C(z0))
G(g(z0)) → c8(B(c(z0)), C(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
G(z0) → c7(D(a(b(z0))), B(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
S tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(z0) → c3(G(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
F(z0) → c6(G(z0))
G(z0) → c7(D(a(b(z0))), B(z0))
K tuples:none
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
C, F, G, B, D
Compound Symbols:
c3, c6, c7, c1, c4
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
S tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(z0) → c3(G(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
F(z0) → c6(G(z0))
G(z0) → c7(B(z0))
K tuples:none
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
C, F, B, D, G
Compound Symbols:
c3, c6, c1, c4, c7
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
D(d(z0)) → c4(C(f(z0)), F(z0))
We considered the (Usable) Rules:
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
b(b(z0)) → c(d(z0))
d(d(z0)) → c(f(z0))
c(z0) → g(z0)
And the Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(B(x1)) = [2]x1
POL(C(x1)) = [2]x1
POL(D(x1)) = [4] + [4]x1
POL(F(x1)) = [4]x1
POL(G(x1)) = [2]x1
POL(a(x1)) = 0
POL(b(x1)) = [4] + [5]x1
POL(c(x1)) = [3] + [5]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(d(x1)) = [2] + [2]x1
POL(f(x1)) = 0
POL(g(x1)) = [3] + [3]x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
S tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
G(z0) → c7(B(z0))
K tuples:
D(d(z0)) → c4(C(f(z0)), F(z0))
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
C, F, B, D, G
Compound Symbols:
c3, c6, c1, c4, c7
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F(z0) → c6(G(z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
S tuples:
B(b(z0)) → c1(C(d(z0)), D(z0))
C(z0) → c3(G(z0))
G(z0) → c7(B(z0))
K tuples:
D(d(z0)) → c4(C(f(z0)), F(z0))
F(z0) → c6(G(z0))
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
C, F, B, D, G
Compound Symbols:
c3, c6, c1, c4, c7
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
B(b(z0)) → c1(C(d(z0)), D(z0))
We considered the (Usable) Rules:
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
b(b(z0)) → c(d(z0))
d(d(z0)) → c(f(z0))
c(z0) → g(z0)
And the Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(B(x1)) = [2]x1
POL(C(x1)) = [4]x1
POL(D(x1)) = [2]x1
POL(F(x1)) = [4]x1
POL(G(x1)) = [4]x1
POL(a(x1)) = 0
POL(b(x1)) = [4] + [5]x1
POL(c(x1)) = [2]x1
POL(c1(x1, x2)) = x1 + x2
POL(c3(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c6(x1)) = x1
POL(c7(x1)) = x1
POL(d(x1)) = [2]x1
POL(f(x1)) = 0
POL(g(x1)) = [2]x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
b(b(z0)) → c(d(z0))
c(c(z0)) → d(d(d(z0)))
c(z0) → g(z0)
d(d(z0)) → c(f(z0))
d(d(d(z0))) → g(c(z0))
f(z0) → a(g(z0))
g(z0) → d(a(b(z0)))
g(g(z0)) → b(c(z0))
Tuples:
C(z0) → c3(G(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
D(d(z0)) → c4(C(f(z0)), F(z0))
G(z0) → c7(B(z0))
S tuples:
C(z0) → c3(G(z0))
G(z0) → c7(B(z0))
K tuples:
D(d(z0)) → c4(C(f(z0)), F(z0))
F(z0) → c6(G(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
Defined Rule Symbols:
b, c, d, f, g
Defined Pair Symbols:
C, F, B, D, G
Compound Symbols:
c3, c6, c1, c4, c7
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
C(z0) → c3(G(z0))
G(z0) → c7(B(z0))
G(z0) → c7(B(z0))
B(b(z0)) → c1(C(d(z0)), D(z0))
Now S is empty
(14) BOUNDS(O(1), O(1))